
This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 20 February 2013, At: 12:40

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954

Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

<http://www.tandfonline.com/loi/gmcl16>

Synthesis, Structure and Electrical Conductivity of $(BEDT-TTF)_x(BrO_4)_y$ Organic Metals

M. A. Beno^a, G. S. Blackman^a, P. C. W. Leung^a,
K. D. Carlson^a, P. T. Copps^a & Jack M. Williams^a

^a Chemistry and Materials Science and Technology Divisions, Argonne National Laboratory, Argonne, Illinois, 60439, U.S.A.

Version of record first published: 17 Oct 2011.

To cite this article: M. A. Beno, G. S. Blackman, P. C. W. Leung, K. D. Carlson, P. T. Copps & Jack M. Williams (1985): Synthesis, Structure and Electrical Conductivity of $(BEDT-TTF)_x(BrO_4)_y$ Organic Metals, Molecular Crystals and Liquid Crystals, 119:1, 409-412

To link to this article: <http://dx.doi.org/10.1080/00268948508075192>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.tandfonline.com/page/terms-and-conditions>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS, STRUCTURE AND ELECTRICAL CONDUCTIVITY OF (BEDT-TTF)_x(BrO₄)_y ORGANIC METALS

M. A. BENO, G. S. BLACKMAN, P. C. W. LEUNG, K. D. CARLSON,
P. T. COPPS, AND JACK M. WILLIAMS
Chemistry and Materials Science and Technology Divisions,
Argonne National Laboratory, Argonne, Illinois, 60439
U.S.A.

Abstract The electrochemical oxidation of BEDT-TTF (bis(ethylenedithio)-tetrathiafulvalene) in 1,1,2-trichloroethane solution in the presence of (n-Bu₄N)BrO₄ as supporting electrolyte produces three distinct morphologies: needles, thick plates, and thin plates. These crystal habits have been identified with different crystallographic phases: needles as (BEDT-TTF)₂BrO₄, thick plates as (BEDT-TTF)₂(BrO₄)(TCE)_{0.5}, and thin plates as (BEDT-TTF)₃(BrO₄)₂. The structural characterization and conductivity for these materials is presented.

INTRODUCTION

Research on BEDT-TTF organic metals has been stimulated by the discovery of metallic conductivity (to 1.4 K) in (BEDT-TTF)₂(ClO₄)₂(1,1,2-trichloroethane)_{0.5}¹ and the subsequent report of pressure induced superconductivity in the non-solvated (BEDT-TTF)₂(ReO₄), derivative ($T_c = 2$ K, at $p > 4$ kbar).² The structural and electrical properties of the needle phase of (BEDT-TTF)₂(BrO₄), isostructural with (BEDT-TTF)₂(ClO₄), have been previously presented.³ We report here the structural results for the two plate phases, (BEDT-TTF)₂(BrO₄)(TCE)_{0.5}, which is isostructural with (BEDT-TTF)₂(ClO₄)(TCE)_{0.5},⁴ and (BEDT-TTF)₃(BrO₄)₂ which is isostructural with the 3:2 ClO₄⁻ derivative.⁵

EXPERIMENTAL

Crystallographic and data collection parameters are given in Table I. The crystal structures were solved by direct methods (MULTAN) and refined with full-matrix least squares to the R-factors given in Table I. Four-probe conductivity measurements show that $(BEDT-TTF)_3(\text{BrO}_4)_2$ is metallic above 210 K and that the resistivity rises sharply below 50 K.

TABLE I Summary of Crystal Data, Data Collection Parameters, and Least-Squares Residuals for $(BEDT-TTF)_2\text{BrO}_4(\text{TCB})_{0.5}$ and $(BEDT-TTF)_3(\text{BrO}_4)_2$

formula	$(\text{C}_{10}\text{H}_{8}\text{S}_8)_2\text{BrO}_4(\text{C}_2\text{H}_5\text{Cl}_3)_{0.5}$	$(\text{C}_{10}\text{H}_{8}\text{S}_8)_3(\text{BrO}_4)_2$
space group	P1	P1
<i>Z</i>	2	1
temperature	125±1K	298
lattice param.		
<i>a</i> , Å	7.656(2)	7.670(1) Å
<i>b</i> , Å	12.957(4)	9.550(2) Å
<i>c</i> , Å	18.590(2)	16.686(2) Å
α , deg.	109.6(2)	89.38(1)°
β , deg.	90.2(2)	87.02(1)°
γ , deg.	105.1(2)	83.87(1)°
<i>V</i> , Å ³	1668.4(8)	1213.6(5) Å
<i>d</i> _{calc.} , g/cm ³	1.95	1.97 g/cm ³
cryst. size, mm	0.19 x 0.58 x 0.65	0.36 x 0.44 x 0.02
$\mu(\text{MoK}\alpha)$, cm ⁻¹	24.15	26.94
transmission factors	0.374-0.657	0.45 - 0.94
data collection instrument	Syntex P2 (graphite-monochromator)	
	$\lambda(\text{MoK}\alpha) = 0.71073$ Å	
scan method	0-2θ, variable scan rate	w-scans, variable rate
data collection range	0° < 2θ < 60°	40° < 2θ < 50°
no. of unique data	8070	4274
no. of unique data $ F_o > 3\sigma(F_o)$	7297	3333
no. of param. refined	397	486
R_{w}	0.068	0.046
R_{p}	0.090	0.041
goodness of fit ^c	4.480	1.57

$$^a R = \sum | |F_o| - |F_c| | / \sum |F_o| .$$

$$^b R_w = [w(|F_o| - |F_c|)^2 / \sum w |F_o|^2]^{1/2} .$$

$$^c \text{goodness-of-fit} = [w(|F_o| - |F_c|)^2 / (N_{\text{obs}} - N_{\text{param}})]^{1/2} .$$

DISCUSSION

These materials contain segregated stacks of donor and acceptor molecules possessing significant intermolecular S-S interactions (less than the van der Waals sum of 3.6 Å) which form a 2-dimensional sheet network. For $(BEDT-TTF)_2(BrO_4)(TCE)_{0.5}$ the anions are ordered but a disordered solvent molecule is located at a center of symmetry in the unit cell (see Figure 1). Disorder is also observed in the ethylene carbon atoms of the BEDT-TTF molecule. However in the $(BEDT-TTF)_3(BrO_4)_2$ structure both the BEDT-TTF molecule and BrO_4^- anion are ordered (see Figure 2). The metal-insulator transition observed in the 3:2 phase is similar to the 190K M-I transition⁵ observed in $(BEDT-TTF)_3(ClO_4)_2$.

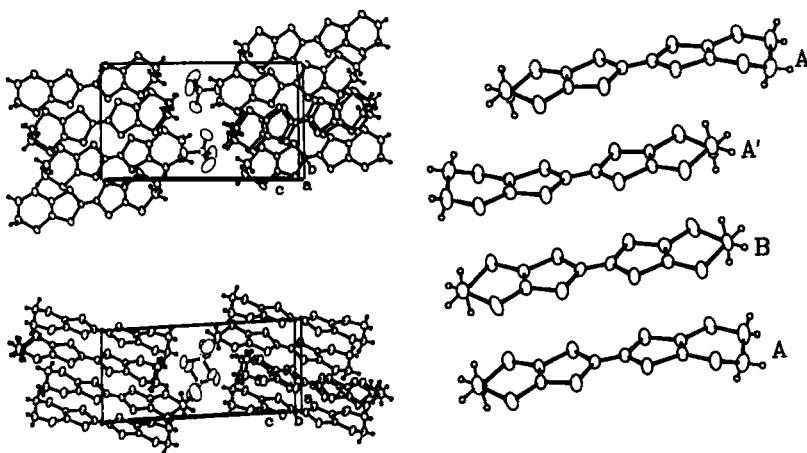


FIGURE 1 Unit cell and side-by-side arrangement of BEDT-TTF molecules in $(BEDT-TTF)_2(BrO_4)(TCE)_{0.5}$.

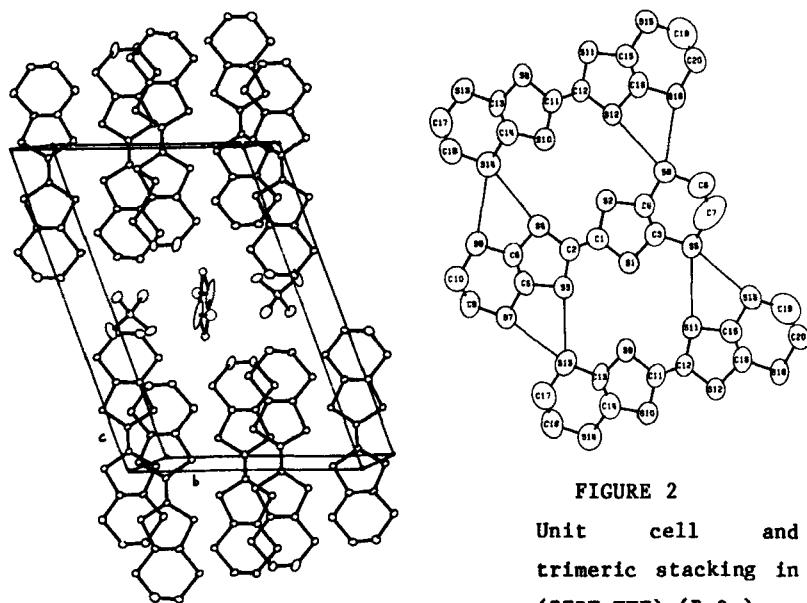


FIGURE 2
Unit cell and
trimeric stacking in
 $(BEDT-TTF)_3(BrO_4)_2$.

Acknowledgment Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, under Contract W-31-109-ENG-38.

REFERENCES

1. G. Saito, T. Enoki, K. Toriumi and H. Inokuchi, *Solid State Commun.*, **42**, 557 (1982).
2. S. S. P. Parkin, E. M. Engler, R. R. Shumaker, R. Lagier, V. Y. Lee, J. C. Scott and R. L. Green, *Phys. Rev. Lett.*, **50**, 270 (1983).
3. J. M. Williams, M. A. Beno, H. H. Wang, P. E. Reed, L. J. Azevedo and J. E. Schirber, *Inorg. Chem.*, **23**, 1790 (1984).
4. H. Kobayashi, A. Kobayashi, Y. Sasaki, G. Saito, T. Enoki and H. Inokuchi, *J. Am. Chem. Soc.*, **105**, 297 (1983).
5. H. Kobayashi, R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, G. Saito, T. Enoki and H. Inokuchi, *Chem. Lett.* **1984**, 179.